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Over the years, we’ve found many common proofwriting errors that can easily be spotted once 
you know how to look for them. In this handout, we’ve distilled seven major points about 
proofwriting that we will specifically be looking for when grading your assignments. They are 
as follows: 

☐ Clearly articulate your start and end points. 

☐ Make each sentence “load-bearing.” 

☐ Scope and properly introduce variables. 

☐ Make specific claims about specific variables. 

☐ Don’t repeat definitions; use them instead. 

☐ Write in complete sentences and complete para-
graphs. 

☐ Distinguish between proofs and disproofs. 

Some of the items on this list, like “write in complete sentences and complete paragraphs,” are 
purely stylistic requirements on proofs. They’re there because they ensure that you’re writing 
proofs in the expected mathematical style. Other items on this list, like “scope and properly 
introduce variables,” are there because they’re often comorbid with more serious logic errors 
that can derail a proof. Our hope is that by providing these specific items to look for when 
checking your proofs, you’ll be able to check your own work more effectively and build a bet-
ter intuition for when there’s something in a proof that just doesn’t feel right. 

We will be applying this checklist to the proofs that you submit. We strongly recommend 
that you work through this checklist on every proof that you write. Doing so will help you 
improve your proofwriting and possibly smoke out some underlying logic errors. 

The remainder of this handout goes into more detail about what each of these rules mean. 
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Clearly Articulate Your Start and End Points 

When you’re writing a proof, you’re laying out an argument that explains why a certain result 
is true. Most proofs have a number of intermediate steps that build up toward a larger result. 
When writing a proof, it’s important to make sure that the reader has a clear sense of where 
it is that you’re going and how you’re going to arrive there. Otherwise, your proofs will be 
extremely hard to read, since while the reader might follow each individual step, they might 
have no idea where you’re going with things. Think about how you might write an argumen-
tative essay – if you just list a series of facts without giving some idea of where you’re ulti-
mately going, your readers are going to have a heck of a time trying to make sense of what 
you’re doing! 

Let’s illustrate this with an example. Consider the following proof: 

     Incorrect!      Proof: Consider an arbitrary x ∈ A. Since x ∈ A and A ⊆ B, we see that x ∈ B. 
And, since x ∈ B and B ⊆ C, we see that x ∈ C, as required. ■  

Here’s a question for you – what exactly is this proof trying to accomplish? It’s hard to say, 
since we don’t know that A, B, and C are, it seems like the statements A ⊆ B and B ⊆ C come 
out of nowhere, and the conclusion doesn’t say exactly why any of this matters. 

The above proof was written for the following theorem: 

Theorem: If A ⊆ B and B ⊆ C, then A ⊆ C. 

With knowledge of the theorem in mind, the proof makes more sense. We know that A ⊆ B 
and that B ⊆ C by assumption, and we’re looking at elements of A and trying to get them as 
elements of C because we’re trying to prove something about the subset relation. But that still 
shifts a lot of work to the person reading the proof. A better proof would provide more guid-
ance about where everything comes from and where everything is going. Here’s what that 
might look like: 

Proof: Let A, B, and C be arbitrary sets where A ⊆ B and B ⊆ C. We will prove that A ⊆ C. To do 
so, choose an arbitrary x ∈ A. We will prove that x ∈ C. 

Since x ∈ A and A ⊆ B, we see that x ∈ B. And, since x ∈ B and B ⊆ C, we see that x ∈ C, which is 
what we needed to show. ■  

Compare this proof to the one before it. Even if you had no idea what the theorem was when 
going into this proof, you could still see exactly what’s being done – what’s being assumed, 
what’s being proved, how the logic flows, etc. There’s no more mystery about why A ⊆ B and 
B ⊆ C are true: we can see that they’re true by assumption. 

There’s a number of reasons why it’s worthwhile to set up your proofs this way. First, when 
you’re still working through the problem and trying to figure out why exactly the result is true, 
this step forces you to write out exactly what it is that you’re assuming and what you need to 
prove. That makes it much easier to figure out what directions you should consider. It also 
forces you to articulate very precisely what it is that you need to establish. If you look at the 



  3 / 21 

overall theorem to prove here, it might seem, well, kinda obvious. Like, “well, of course if A is a 
subset of B and B is a subset of C, then A is a subset of C – that’s just what subset means!” But 
if you start unpacking the definitions and articulating where specifically you’re going to start 
and end, it becomes much easier to see what you need to do. 

 

Why we enforce this rule: When you’re first learning how to write proofs, one of the biggest 
challenges is simply figuring out what it is that you’re supposed to assume and what it is that 
you’re supposed to prove. By requiring that you articulate this information clearly, we hope 
to reduce the likelihood that you submit a proof that is a completely correct proof of the com-
pletely wrong theorem. 



  4 / 21 

Make Each Sentence Load-Bearing 

When you’re writing a proof, you are trying to convey a mathematical argument, and each 
step in what you write should advance your argument. As a general rule, every statement in a 
proof should do one of the following things: 

• Set up a goal. As mentioned in the preceding pages, your proof should start off with 
an introduction that clearly articulates a start and end point. In larger proofs, you 
might find yourself needing to prove an auxiliary result that you’ll use to build up to 
the larger result, and when you do that, you’ll similarly want to set up what it is that 
you’re trying to prove. 

• Introduce a new variable. Sometimes, in the course of a proof, you’ll need to introduce 
new variables. If you’re proving something universally-quantified, you might want to 
say something like “let x be an arbitrary bananafish,” and if you’re proving something 
existentially-quantified you might want to say something like “since n is even, we know 
there is an integer k such that n = 2k.” 

• Combine preceding results into something new. Any sentence that doesn’t set up a 
new goal or introduce a new variable should make progress toward the result by taking 
some number of preceding statements and deriving some new, mathematically rigor-
ous result from those preceding statements. For example, you might say something like 
“since n = 2k, we see that n2 = 2(2k)2” or “since A ⊆ B and x ∈ A, we learn that x ∈ B.” 

If you find yourself reading over a sentence that doesn’t accomplish any of these goals, it is 
likely unnecessary and should be eliminated. This is a great way to reduce the size of your 
proofs and to make sure that you’re being rigorous. 

This is a particularly useful check to apply to a proof after you’ve first finished writing it, since 
often times in the course of solving a problem and writing up a first proof draft you’ll go in a 
direction that ultimately ends up not being necessary, or write out some high-level lines of 
reasoning that you then make more rigorous later on. 

 

Why we enforce this rule: We enforce this rule for a number of reasons. 

First, this rule is designed to get you to review your proofs after having written a first draft. 
It’s common, in writing up the first version of a proof, to include statements that aren’t actu-
ally needed later on, and by requiring each statement to be load-bearing we hope to encourage 
you to closely review your work to make sure that everything you’ve included ends up getting 
used. 

Second, this rule is there to make sure that you are being precise with your reasoning. If you 
find that your proofs include sentences that talk about how things tend to work in general, or 
which describe a mathematical situation without the precision required above, it might indi-
cate that you haven’t pinned things down as tightly as you may have expected. 

Finally, this rule is here because this is just how proofs are expected to be written these days. 
It’s common in mathematics to separate mathematical proofwriting from mathematical ex-
pository writing. In an exposition, an author might talk about various intuitions they’ve had, 



  5 / 21 

various insights that will make things easier to understand, etc., but in the proof itself it’s 
common for sentences to be fairly direct and to the point. 
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Scope and Properly Introduce Variables 

In programming languages like C, C++, and Java, you’re required to declare variables before 
you use them. The type of the variable lets the reader (and the compiler!) know what sort of 
thing the variable can hold and what it represents. If you try to use a variable you haven’t 
declared, or if you try to treat a variable of one type as though it had a different type, you get 
a compiler error because there’s something amiss with what you’ve done. 

Variables in mathematical proofs obey a similar sort of convention. When writing proofs, it’s 
important that you clearly and precisely articulate what each variable stands for and, addi-
tionally, where it comes from. When you use a variable in a proof, you should explicitly artic-
ulate 

• the name of the variable, 

• what value it represents, and 

• where it comes from. 

Those last two points are critical in writing proofs. Every variable that you use should be of 
one of the following types: 

• An arbitrarily-chosen value. A variable like this doesn’t represent some specific num-
ber, set, or quantity, but rather an arbitrarily-chosen value. Variables like these often 
arise in the context of proving universally-quantified statements. For example, if you 
want to prove the claim “for any natural number n, if n is even, then n2 is even,” you 
might introduce a variable n like this: 

Let n be an arbitrary even natural number. 
Consider an even natural number n. 

Let n be an even natural number. 

Here, we’re indicating that the variable is named n, its value is some even natural number, and 
that it’s chosen arbitrarily. 

• An existentially instantiated value. Sometimes, you know that some quantity must 
exist, but you don’t know what it is. For example, if you know that n is an even natural 
number, you know that n must be twice some other natural number, and so you might 
give it a name, as shown here: 

 Since n is even, there is some integer k such that n = 2k. 

It’s important to note that this number k is not chosen arbitrarily. That would imply that any 
choice of k would work here, but that’s not true: there’s only one choice of k you can pick 
where n = 2k. Rather, k is called an existentially instantiated variable, because we know that 
there exists some value with some property and we’re introducing the variable k as a way of 
saying what that value is. 

• An explicitly chosen value. Sometimes, you’ll introduce a variable simply as a simpler 
way of referring to some other quantity. For example, we might say something like this: 

Let m = 2k2. 

Or, we could say something like this: 
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Consider the set D = { x ∈ S | x ∉ f(x) }. 

Here, we’re just giving a name to an existing quantity, which functions like a constant in a 
language like C, C++, or Java. 

When you write up a proof (or, more generally, when you’re reading something mathemati-
cal), it’s important to make sure that you can look at each variable and clearly tell whether 
that variable is arbitrarily chosen, existentially instantiated, or explicitly chosen. Just like var-
iables in C, C++, or Java, this helps you clearly indicate what your variables mean, what they 
store, and where they’re coming from. 

One particular caveat to watch out for: some variables in mathematics are true placeholders 
that don’t actually stand for anything. For example, in set-builder notation, we use placeholder 
variables to denote the name of some unknown quantity: 

{ n ∈ ℕ | n is even and n2 > 48 } 

In this context, n does not represent a value. It’s just a placeholder so that we can write the 
expression “n is even and n2 > 48” in a way that’s clear and easy to follow. It’s an error to try 
to reference the number n out of this context. 

To see how these rules come into play, let’s look at one possible proof of this result: 

For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C. 

Here’s a not-so-great proof of this result: 

     Incorrect!      Proof: Let A, B, and C be arbitrary sets where A ⊆ B and B ⊆ C. This means 
that for any choice of x, if x ∈ A, then x ∈ B. Similarly, for any choice of x, if x ∈ B, then x ∈ C. We 
need to prove that A ⊆ C, which means that we need to prove that for any choice of x, if x ∈ A, 
then x ∈ C. 

To show this, consider any x ∈ A. Since x ∈ A and we know that any x ∈ A must also be an 
element of B, we see that x ∈ B. Similarly, since x ∈ B and we know that any x ∈ B must also be 
an element of C, we see that x ∈ C, which is what we needed to show. ■  

Let’s focus on a few of sentences. For starters, let’s look at this sentence from the first para-
graph: 

This [A ⊆ B] means that for any choice of x, if x ∈ A, then x ∈ B. 

What, exactly, is the variable x here? It’s not an arbitrarily-chosen x, since we didn’t say some-
thing like “choose an arbitrary x.” Instead, it’s a placeholder: it says that if we find some x where 
x ∈ A, then we can conclude that x ∈ B. All that we’ve done here is set up some possible confu-
sion for later on in the case where we do define some variable named x. 

Think back to Rule Three. Every sentence in a proof should set up a goal, introduce a variable, 
or combine results together into something new. This sentence doesn’t set up a goal. It doesn’t 
introduce a new variable. In a sense it kinda combines results together into something new, 
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but really, it’s not doing that. It’s just restating the definition of what a subset is. As a result, 
this sentence probably fails Rule Three and should be cut. 

This sentence actually does cause problems later in the proof, specifically in these sentences: 

To show this, consider any x ∈ A. Since x ∈ A and we know that any x ∈ A must also be an ele-
ment of B, we see that x ∈ B. 

In the first sentence, we introduce a new variable x, which is chosen as an arbitrary element 
of the set A (which is fine by both Rule Three and Rule Four). You can imagine that the reader 
is going to look at this and say “okay, I’m going to pick some specific thing x.” In the next sen-
tence, though, the proof talks about “any x ∈ A.” Now the reader is going to be confused: “hold 
on, are you talking about the x that you just asked me to pick in the preceding sentence, or are 
you talking about some other thing called x?” 

Think of it this way: the following code wouldn’t be legal in C, C++, or Java: 

 int x = 137; 
 int x = 42;  // Error! 

The issue here is that x is already defined on the first line, so the second line is a variable re-
definition error. If you want to talk about x going forward, just use its name, not its type: 

 int x = 137; 
 x = 42;      // Okay! 

The same is true of proofs. Phrases like “any x,” “every x,” or “any choice of x” suggest that 
you’re introducing some new variable, rather than referring to an existing variable. 

A better way to rewrite the above sentences would be to write something like this: 

Before After 

To show this, consider any x ∈ A. Since x ∈ A 
and we know that any x ∈ A must also be an 

element of B, we see that x ∈ B. 

To show this, consider any x ∈ A. Since x ∈ A 
and A ⊆ B, we see that x ∈ B. 

 

Something to specifically keep an eye out for arises when you switch between telling the 
reader what you’re going to prove and then actually going and proving it. For example, suppose 
that you want to prove this claim: 

For any sets A and B, we have A ∩ B ⊆ A. 

Here’s a not-so-great way of proving this: 

     Incorrect!      Proof: Let A and B be arbitrary sets. We will prove that A ∩ B ⊆ A by showing 
that every x ∈ A ∩ B satisfies x ∈ A. To see this, notice that since x ∈ A ∩ B, we know that x ∈ A 
and x ∈ B. In particular, this means that x ∈ A, as required. ■  
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There’s a subtle but important shift in the meaning of the variable x between the second and 
third sentences. In the second sentence (“We will prove that ...”), the variable x is a place-
holder: it doesn’t actually stand for any specific value. In the third sentence (“To see this, ...”), 
the variable x is being used as though it’s an actual, concrete value. This is a problem, since we 
don’t know precisely what value x has. A better way to write this proof would be to explicitly 
pick x arbitrarily: 

(Better) Proof: Let A and B be arbitrary sets. We will prove that A ∩ B ⊆ A by showing that 
every x ∈ A ∩ B satisfies x ∈ A. To see this, consider any x ∈ A ∩ B. Notice that since x ∈ A ∩ B, 
we know that x ∈ A and x ∈ B. In particular, this means that x ∈ A, as required. ■  

 

Why we enforce this rule: We tend to be fairly strict about this rule, and that can really catch 
people off-guard who aren’t expecting it. So why is that? There are two main reasons. 

First, requiring that each variable have a clear, precise, unambiguous meaning tends to mark-
edly improve the precision of the proof. Many mathematical errors arise when talking about 
how things work “in general” or by making overly broad statements about how certain classes 
of objects work. On the other hand, if you’ve singled out some specific object and given it a 
name, then there’s no need to make those broad claims. You just need to talk about the specific 
object that you have, referring to it by the specific name that you’ve chosen. From experience, 
proofs that do not pin things down at this level of detail tend to have more errors and to miss 
important but subtle details. 

Second, this level of precision when speaking about variables requires that you, the writer, 
have a clear and unambiguous sense of what every term means. Many mistakes in proofs arise 
from swapping the meaning of one variable for another (for example, using a variable n to 
refer to two different natural numbers), or confusing a known and unknown quantity (for 
example, using a variable k that needs to be solved for rather than trying to deduce what it is). 
Articulating what each variable means makes it harder to make these sorts of mistakes and 
forces you to slow down as you’re writing to reflect on these details. 
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Make Specific Claims About Specific Variables 

When you’re first learning to write proofs, it’s common to want to write proofs that make 
broad claims about how things work in general rather than pinning down the specifics. For 
example, consider this not-so-great proof that if A ⊆ B and B ⊆ C, then A ⊆ C. 

     Incorrect!      Proof: Let A, B, and C be arbitrary sets where A ⊆ B and B ⊆ C. We will prove 
that A ⊆ C. 

Since A ⊆ B, we see that every element of A is an element of B. Similarly, since B ⊆ C, we see 
that every element of B is an element of C. Therefore, every element of A is an element of C, so 
by definition A ⊆ C, as required. ■  

The intuition underlying this proof is good, but the way this is written is far too high-level. 
Specifically, remember that the definition of the statement A ⊆ C is the following: 

For every x, if x ∈ A, then x ∈ C. 

In order to prove this claim by calling back to the definition, you’d need to show that if you 
chose an arbitrary element x ∈ A that you’d find x ∈ C. The proof given above does not do this. 
The idea behind it – that anything in A is in B and anything in B is in C – is totally correct, but 
that’s not how you’d phrase it in a proof. In proofwriting, if you want to make a claim that 
something is true in the general case, do so by using arbitrary choices or a proof by contradic-
tion. For example: 

Rewrite this…  … like this 

Since A ⊆ B, every element of A 

is an element of B. 
→ 

Consider any element x ∈ A. Since A ⊆ B and 

x ∈ A, we see that x ∈ B. 

The function f maps different inputs 
to different outputs. 

→ 
Consider any arbitrary x and y where x ≠ y. 

Then we know that f(x) ≠ f(y). 

When you’re reading over your proofs, take a minute to check whether you are making spe-
cific, precise claims about named variables or broad, general claims about all objects of a certain 
type. If you find yourself doing the latter, rewrite it to use the former. This will both clarify 
your reasoning and make it significantly harder to make mistakes. Plus, if you find that you 
can’t pin down precisely what you mean about something, it might indicate that there’s some 
concept you’re having trouble with. 

 

Why we enforce this rule: This rule – another one that we tend to be fairly strict about – is 
designed to make sure that you’ve properly justified each step of your reasoning by calling 
back to the appropriate definitions. 

When you’re first studying proof-based mathematics, you’ll likely have a number of intuitions 
about how different types of objects behave. Some of these intuitions are great, and you 
should keep using them. Other intuitions, on the other hand, can be at odds with what the 
math says, and when that happens, you should refine those intuitions so that they guide you 
in the right direction. 
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The only way to know which of your intuitions are good and which need tuning is to explicitly 
validate those intuitions by attempting to formalize them mathematically. To do so, we ask 
that you speak with mathematical precision and to show how specific applications of defini-
tions give you your result. If you’re able to do this, great! It likely means your intuition is point-
ing you the right way. If not, that might indicate that your intuition might be suggesting some-
thing that the math says isn’t true, in which case it’s a good thing that you tried formalizing 
things! At that point, you should back up, pause, and see whether the result is still true for 
some other reason or whether you need to reshape your intuition for the future. 
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Don’t Repeat Definitions; Use Them Instead 

Mathematical definitions are wonderfully useful. They give us a way to take an intuitive idea 
like “even numbers” and to formalize them in a way that lets us manipulate them in proofs. 

Most mathematical proofs will in some way, shape, or form touch on formal definitions. How-
ever, you should avoid restating definitions purely in the abstract and instead focus on how 
those definitions are specifically useful or relevant for what you’re trying to do. For example, 
we recommended replacing statements like the ones on the left with one like what’s on the 
right: 

We know that x ∈ A. Since A ⊆ B, we know 
that every element of A is an element of B. 

Thus we see that x ∈ B. 
  

We know that x ∈ A. Since A ⊆ B, we know 
that every x ∈ A satisfies x ∈ B. Therefore, 

we see that x ∈ B. 
→ Since x ∈ A and A ⊆ B, we see that x ∈ B. 

We know that x ∈ A. Since A ⊆ B, we know 
that every z ∈ A satisfies z ∈ B. Therefore, 

we see that x ∈ B. 
  

There are a few reasons why it’s wise to avoid repeating definitions in the abstract. First, you 
can assume that the reader knows all of the relevant terms and definitions that are needed in 
your proofs. Your job as a proofwriter is not to convince the reader of what the definitions are, 
but to show how those definitions interact with one another to build into some result. In that 
sense, repeating a definition in the abstract, like what’s done above and to the left, doesn’t 
actually contribute anything to the argument you’re laying out. The reader already knows the 
definition, so that sentence is fully redundant. 

Second, restating definitions in the abstract risks violating other checklist items. Let’s go one 
at a time through the three options on the left that we advise against. The first one is far too 
general (“every element of A is an element of B”) and therefore breaks our advice of making 
specific claims about specific variables. The second one (“every x ∈ A satisfies x ∈ B”) is a var-
iable scoping error – is x the specific value referred to in the first sentence, or is it a place-
holder? The third one is making specific claims about the variable z and doesn’t have a scoping 
error, but in that case z is purely a placeholder – it doesn’t refer to any value. In each of those 
cases, you can safely delete things. 

And finally, restating definitions in the abstract just makes things longer. Compare the three 
options to the left to the one on the right. All three of those proof fragments are significantly 
longer than the more concise and direct version shown to the right. 

 

Why we enforce this rule: Brevity. Simply put, this rule is a great way to reduce the amount 

of writing you do and to keep your proofs short.        
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The other reason we enforce this rule is that it reduces the space of possible errors you can 
make. As we’ve mentioned earlier, using placeholder variables is an easy way to run into trou-
ble, either by confusing one variable for another or by thinking you’ve proved something that 
you actually haven’t. Asking that you apply definitions rather than repeat them reduces the 
number of placeholder variables you have to work with in your proof, eliminating many po-
tential opportunities for error. 
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Write In Complete Sentences and Complete Paragraphs 

Although proofs exist to convey mathematical arguments, the expectation is that they should 
be written in grammatically-correct English sentences and in paragraph form. 

A good test we recommend applying to your proofs is what we call the mugga mugga test. 
Take your proof and try reading it out loud, replacing all the mathematical content with the 
phrase “mugga mugga.” If what comes back is grammatically correct, then you’re on the right 
track! On the other hand, if what you write is hard to read aloud, or just plain doesn’t sound 
right, it means that you might need to go back and correct things. As an example, here’s a not-
so-great proof that if n is even, then n2 is even: 

     Incorrect!      Proof: If n is even, n = 2k. n2 = 4k2, which is 2(2k2). 2k2 ∈ ℤ, so n2 is even. ■ 

Let’s apply the mugga mugga test to this proof, one sentence at a time. Here’s the first sen-
tence: 

Original         Mugga Mugga Version 

    If n is even, n = 2k.          If n is even, mugga mugga.     

The mugga-muggaified version of this sentence isn’t grammatically correct – it has no subject 
and no verb. The reason for this is that the subject of the original sentence is n and the verb is 
“equals,” but since we’ve written out the equality using the equals sign, it got mugga-muggified 
in the updated version of the sentence. 

More generally: 

Tip: Avoid writing sentences where mathematical notation must be treated as a verb. 

So what should we do instead? Let’s begin with what you shouldn’t do. Don’t rewrite the sen-
tence like this in order to pass the mugga mugga test: 

            If n is even, n equals 2k.             

This technically passes the mugga mugga test, but it’s doing so by taking a clear mathematical 
statement (n = 2k) and rendering the unambiguous, precise mathematical symbol = in English. 
The whole reason for having mathematical symbols in the first place is so that we can be pre-
cise with our notation, and this is a step in the wrong direction. 

Instead, consider rewriting the sentence in a way that introduces a new subject and a new 
verb. There are many ways that we can do this. Here are a few options to choose from: 

Original         Mugga Mugga Version 

If n is even, then we can write n = 2k.  
If n is even, then we can write mugga 

mugga. 

Since n is even, we see that there is some 
integer k such that n = 2k. 

 
Since n is even, we see that there is some 

integer k such that mugga mugga. 
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Because n is even, it can be expressed as 

n = 2k for some integer k. 
 

Because n is even, it can be expressed as 

mugga mugga for some integer k. 

Notice how in each sentence we’ve introduced an explicit subject and verb in a way that passes 
the mugga mugga test. 
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Let’s look at this second sentence: 

Original         Mugga Mugga Version 

n2 = 4k2, which is 2(2k2).  Mugga mugga, which is mugga mugga. 

Again, we’re failing the mugga mugga test because the subject and verb of the sentence are 
expressed in mathematical notation. We’d be better off rewriting this sentence in one of the 
following ways: 

Revision         Mugga Mugga Version 

We can rewrite the expression n2 = 4k2 as 
n2 = 2(2k2). 

 
We can rewrite the expression mugga 

mugga as mugga mugga. 

Rewriting 4k2 as 2(2k2), we see that 
n2 = 2(2k2). 

 
Rewriting mugga mugga as mugga 
mugga, we see that mugga mugga. 

A common theme in the mugga mugga test is that you should avoid using math notation as 
the verb in a sentence. Similarly, you should avoid using mathematical notation or shorthands 
to abbreviate parts of sentences. There are a number of shorthands that have been developed 
over the years, primarily for use on blackboards where writing out longhand can take a while. 
For example, the word “therefore” is often abbreviated ∴, and the word “because” is often ab-
breviated ∵. These shorthands are just that – they’re shorthands – and should not be used in 
mathematical proofs except if you’re trying to write something up quickly and on a black-
board. For example, please, please, please don’t write the following: 

∵ n is even, n = 2k for some integer k, ∴ n2 = 4k2 = 2(2k2), ∴ n2 is even ∵ n2 = 2m for m = 2k2. 

This one really, really, really fails the mugga mugga test: 

Original         Mugga Mugga Version 

 ∵ n is even, n = 2k for some integer k, 
∴ n2 = 4k2 = 2(2k2), ∴ n2 is even ∵ n2 = 2m 

for m = 2k2. 

 

Mugga mugga n is even, mugga mugga 
for some integer k, mugga mugga mugga 
mugga, mugga mugga n2 is even mugga 
mugga mugga mugga for mugga mugga. 

This almost reads like a parody of a terrible math lecture. So please don’t write proofs like 

this.        

Just as you’re expected to write in complete sentences, you’re expected to write in complete 
paragraphs. This means that your proofs should not consist of bulleted or numbered lists of 
statements. For example, please don’t write proofs like these: 

• Let n be an even integer. 

• Since n is even, we can write n = 2k for some integer k. 

• Then n2 = 4k2. 

• So n2 = 2(2k2). 

• Let m = 2k2. 
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• [etc.] 

Although we can see what this proof is saying, this just isn’t the format that’s expected and so 
you shouldn’t structure things this way. 

Why we enforce this rule: We primarily enforce this rule because this is the standard con-
vention in mathematical writing and we’re hoping to train you to communicate mathematics 
effectively. Additionally, this rule makes proofs much easier to read by requiring you, the 
writer, to link your ideas together in a way that helps the argument flow. 
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Distinguish Between Proofs and Disproofs 

The short version of this section goes as follows: 

• A proof is an argument that explains why some theorem is true. 

• A disproof is an argument that explains why some claim is false. 

• Don’t write a proof by contradiction when you mean to write a disproof. 

Now, the longer version.        

If you are writing a proof of a result, that result is called a theorem. The term “theorem” spe-
cifically refers to a statement that is true under a specific set of assumptions. The general tem-
plate for writing a proof looks like this: 

Theorem: [ statement that you want to prove is true ] 

Proof: [ some argument establishing why that statement is true ] 

On the other hand, let’s suppose that you have some statement that is not true, and you want 
to show that that statement is indeed false. This is called a disproof. Since you’ll be showing 
that a given statement is not true, it is not appropriate to call that statement a “theorem.” Re-
member – the term “theorem” specifically refers to a statement that’s true! When you’re writ-
ing a disproof, you’d typically refer to the statement in question as a claim (something that’s 
being proposed, but which isn’t necessarily true) to indicate that the statement should be 
treated with some suspicion. 

The general template for writing a disproof looks like this: 

Claim: [ statement that you want to prove is false ] 

Disproof: [ some argument establishing why that statement is false ] 

Be very careful not to mix and match the terminology from proofs and disproofs. For example, 
suppose you want to disprove the claim that if A and B are sets, then A ∩ B = Ø. (Here, this 
statement is false because it’s implicitly a universally-quantified statement, and there indeed 
exist pairs of sets with a nonempty intersection). Here’s how you shouldn’t do this: 

     Incorrect!      Theorem: If A and B are sets, then A ∩ B = Ø. 

     Incorrect!      Proof: We will show that this statement is not true. Consider the sets A = ℕ 
and B = ℕ. Notice that A ∩ B = ℕ ∩ ℕ = ℕ, so A ∩ B ≠ Ø. ■  

The problem with the above setup is that, to a quick glance, it seems like you’re doing exactly 
the opposite of what you’re actually doing. By labeling the statement as a theorem and the 
argument as a proof, you are signaling to your reader that you think that the statement is true 
and that you’re going to provide a justification for it. If they then read your proof, they’re going 
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to be terribly confused, because you’re starting your proof off by saying that you’re going to 
show that your theorem – something that’s supposed to be true – isn’t actually true. 

A better way to write this would be to do something like this: 
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Claim: If A and B are sets, then A ∩ B = Ø. 

Disproof: We will show that the negation of this statement is true, namely that there exist sets 
A and B where A ∩ B ≠ Ø. 

Consider the sets A = ℕ and B = ℕ. Notice that A ∩ B = ℕ ∩ ℕ = ℕ, so A ∩ B ≠ Ø. ■  

Take a look at how this argument is laid out. First, the statement in question is marked as a 
claim, not a theorem, so someone reading over your work will get cued in that you’re simply 
stating something rather than arguing that it’s true. Next, the argument is explicitly labeled as 
a disproof, indicating to the reader that they’re about to see why the claim isn’t true. The spe-
cifics of that argument then outline a reason why the claim is false – specifically, it says that 
the negation of the claim is true, then explains why that’s the case. 

Another common error we see people make when writing out disproofs is to mix up two re-
lated but different concepts: disproofs (arguments that show why a claim isn’t true) and 
proofs by contradiction (arguments that show that a claim is true by assuming for the sake of 
argument that it isn’t). Although both a disproof and a proof by contradiction will involve 
working with the negation of a statement, they proceed very differently from one another. In 
a disproof, you take the negation of the statement in question, then prove that the negation is 
true. In a proof by contradiction, you assume that the negation is true, derive a contradiction, 
and then claim that, as a result, the statement must have been true all along. In other words, 
a disproof explains why something is not true, and a proof by contradiction explains why 
something is true. As a result, you have to be careful not to mix these concepts up. 

For example, here’s another example of how not to write a disproof: 

Claim: If A and B are sets, then A ∩ B = Ø. 

     Incorrect!      Disproof: Assume for the sake of contradiction that there exist sets A and 
B where A ∩ B ≠ Ø. 

Consider the sets A = ℕ and B = ℕ. Notice that A ∩ B = ℕ ∩ ℕ = ℕ, so A ∩ B ≠ Ø. ■  

This disproof says that we should start by assuming that the negation of the claim in question 
here is true. Remember that the whole point of a disproof is to explicitly prove that the nega-
tion of the claim is true, so if we start off by assuming the negation of the claim, there’s noth-
ing left to do! 

 

Why we enforce this rule: This rule is designed to minimize confusion on the part of the per-
son reading your proof. If you are writing a disproof of a result and structure it as though 
you’re writing a proof of a theorem, the person reading your disproof will go in with com-
pletely incorrect expectations about what they’re going to find. In the best case, a reader will 
quickly figure this out and begin rereading what you wrote from the top, which isn’t the best 
use of their time. In the worst case, the reader will be totally lost and not understand what it 
is that you’re trying to do. (There’s an even worse case, and that’s where a TA will look at what 
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you wrote, say “well, you got the wrong answer, because you’re trying to prove something 

false” and then give you zero points without reading further, but we’ll ignore that for now.       ) 


